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Questions

Can NLP models make decisions? How well are they capable of reasoning, on what types
of tasks? Are these capabilities a property of the particular NLP models you considered, the
class of models they are members of, or all NLP models as a whole?
Answer:

According to Kahneman’s influential work Thinking, Fast and Slow, human thinking process can be
characterized by two types: System 1 thinking, which is fast, immediate, and instinctive, System
2 thinking which is slower, more deliberative, and logical. Interestingly, these notions of “fast” and
“slow” thinking also map well onto many natural language processing (NLP) tasks.

Since the advent of the Transformer architecture (Vaswani et al., 2017) and consistent with observed
scaling laws (Kaplan et al., 2020) large language models (LLMs) have demonstrated strong performance
on a variety of System 1 tasks, such as machine translation (Zhu et al., 2023), natural language under6
standing (evidenced by high scores on GLUE (Wang, 2018) and SQuAD (Rajpurkar, 2016)), and question
answering (Joshi et al., 2017). However, more complex System 2 reasoning—requiring in6depth logical
or multi6step deliberation—does not appear to improve simply through further scaling of model size
(Kojima et al., 2022). To tackle this challenge, researchers have proposed a range of methods aimed at
eliciting the reasoning abilities of LLMs, and current reasoning research can be broadly categorized as
follows:

• Prompt-based: Prompt6based reasoning methods aim to elicit an LLM’s reasoning ability by
including special instructions or examples within the input prompts. Compared to other techniques,
these methods do not require exploring multiple reasoning paths, making them highly efficient.
However, prompt design often needs to be tailored to specific tasks, and guaranteeing consistent
performance across different LLMs is challenging, as the effectiveness of a given prompt may vary
from model to model. Consequently, these methods are difficult to scale. Wei et al. (2022) first
demonstrated that including few6shot examples to illustrate the reasoning process can successfully
elicit the reasoning ability of LLMs. Kojima et al. (2022) subsequently showed that this ability can
be elicited even without including such few6shot demonstrations.

• Model-based: Inspired by the human cognition process (Gentner & Stevens, 2014), model6based
methods aim to break down the reasoning process into multiple steps and build an internal “world
model” to track the state and reward of each potential reasoning path. Ultimately, the path with the
highest reward is chosen as the final outcome. RAP (Hao et al., 2023) frames the reasoning process as
a Monte Carlo Tree Search (MCTS) problem, treating each intermediate step as a node and expanding
the tree until a termination condition is met. Yao et al. (2024) propose a similar tree6based approach
but use LLMs as a value function to evaluate each step; the resulting reasoning path can then be
retrieved via breadth6first search (BFS) or depth6first search (DFS).
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• Interaction-based: The interaction6based reasoning methods strive to incorporate actions into the
reasoning process in an interleaved manner, allowing new observations gleaned from each action
to enrich subsequent reasoning. Because of this property, these methods are commonly applied to
embodied planning tasks (Hao et al., 2024). ReACT (Yao et al., 2022) exemplifies this approach by
using large language models (LLMs) to augment the agent’s action space, thereby providing richer
information for deciding the next action. Shinn et al. (2024) further extend the ReACT framework
by introducing memory, self6reflection, and evaluator modules to help the agent learn from its trial
trajectories.

• Decoding-based: Recent research indicates that large language models (LLMs) can exhibit reason6
ing abilities without relying on specialized prompting, revealing an inherent chain6of6thought (CoT)
capability along the decoding path, particularly where probability disparities are more pronounced
(Wang & Zhou, 2024). This finding has been found to be model agonistic and valid across LLMs with
various scales.

Following Hao et al. (2024), the reasoning methods are often benchmarked on the following tasks:

• Mathematical Reasoning: The ability to solve mathematical questions is closely related to logical
reasoning. Consequently, the reasoning capabilities of large language models (LLMs) are often
assessed using datasets composed of math word problems. One such dataset is GSM8K (Cobbe et
al., 2021), which contains 8.5K high6quality grade6school problems requiring multi6step reasoning
and calculation. These problems typically necessitate two to eight reasoning steps, each involving
intermediate arithmetic operations.

• Common Sense Reasoning: The StrategyQA dataset (Geva et al., 2021) is a common6sense
reasoning dataset designed to test the multi6step, multi6hop reasoning abilities of large language
models (LLMs). It comprises 2,780 carefully crafted examples requiring implicit reasoning. Each
question prompts a Boolean (yes/no) answer, allowing straightforward comparison between an
LLM’s response and the reference answer to determine accuracy.

• Logical Reasoning: The logical reasoning benchmark strives to isolate reasoning ability from
other confounding factors. By reducing the problem to pure logical deduction, not only can the
final answers of LLMs be used to measure accuracy (i.e., global correctness), but their intermediate
reasoning steps can also be verified through formal analysis to ensure each step follows logically
from the previous ones. PrOntoQA (Saparov & He, 2022) is a logical reasoning dataset constructed
via ontology generation. Within this dataset, each question comprises a set of premises and a query
claim, and the LLM must produce a CoT grounded in the logical relationships among the premises
to determine whether the query claim is correct.

• Embodied Planning: This type of task evaluates how well LLMs or LLM agents can reason about
and interact with the physical world to achieve specific goals. For instance, ALFWorld (Shridhar
et al., 2020) provides a simulated environment and a given objective that the LLM or agent must
accomplish by reasoning and engaging with the environment.

Regarding the question, a recent reasoning benchmark paper (Hao et al., 2024) suggests that an LLM’s
reasoning ability is generally positively correlated with its scale across various types of tasks (Figure 1).
Moreover, this reasoning ability appears to be emergent, arising only in decoder6only or encoder6
decoder transformer architectures since encoder6only models cannot generate reasoning paths.
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Figure 1: Results from (Hao et al., 2024); Results of different LLMs using CoT; The dataset with “*”
is evaluated using the paper proposed AutoRace metric, the other are evaluated with a rule6based
evaluator (oracle verifiers); The score is the average performance, i.e., 1|𝑀|𝕀{𝐶 = 𝐶

∗}, where 𝑀  is the
number of examples, 𝐶 is referenced reasoning chain, 𝐶∗ is output reasoning chain, and 𝕀 is indicator

function.
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Can NLP models make use of metacognitive reasoning? How well are they capable of metar-
easoning, and on what types of tasks? Compare to the case of human reasoning. Point out any
areas where machines may have structural advantages or disadvantages in metareasoning
in comparison to humans.
Answer:

Meta6reasoning generally refers to “reasoning about the reasoning process,” encompassing the control,
evaluation, and monitoring of one’s own reasoning. Recently, as research on large language models
(LLMs) has advanced, the concept of meta6reasoning has been increasingly explored in various studies.

However, as the adaption of meta6reasoning to natural language processing is relatively young,
researchers have approached the topic from diverse perspectives. Firstly, De Sabbata et al. (2024)
investigated this topic from a cost perspective. Humans possess a finite cognitive capacity and have
evolved to optimize their thinking processes within constrained budgets (Griffiths et al., 2019). For
LLMs, although methods exist to accelerate and scale the inference process (Zhu et al. (2024), Timor
et al. (2024)), recent reasoning approaches often require multiple passes (Yao et al. (2024), Shinn et al.
(2024)) for a single query, making them computationally expensive. Consequently, selectively activat6
ing and determining an appropriate reasoning length has emerged as a critical challenge. The rational
meta6reasoning framework proposed by De Sabbata et al. (2024) introduces a fine6tuning algorithm
that explicitly accounts for reasoning length. This approach optimizes cost by incorporating a loss
term proportional to the reasoning length, fine6tuning the model with the dual objective of generating
correct answers while minimizing token throughput. In their experiment, they are able to train models
with the same level of accuracy with fewer input and output tokens. Secondly, in some studies, meta6
reasoning refers to monitoring the reasoning process rather than solely focusing on the accuracy of
the final output. For instance, Zeng et al. (2024a) proposed a benchmark with a metric that evaluates
not only the accuracy of the final result but also the correctness of the intermediate reasoning process.
Finally, Wang et al. (2024) interprets meta6reasoning as the ability to abstract symbolic relationships
from semantic forms and reason in a symbolic manner.

The current tasks in meta6reasoning closely resemble standard reasoning tasks but include additional
criteria to evaluate performance. For instance, De Sabbata et al. (2024) focused on tasks such as
mathematical and commonsense reasoning while measuring metrics like average token usage and
throughput. Similarly, some benchmarks (Zeng et al. (2024b), Xia et al. (2024)) place greater emphasis
on evaluating the correctness of intermediate reasoning processes. Compared to human reasoning,
it remains challenging to determine whether LLMs truly exhibit meta6reasoning capabilities. Never6
theless, as discussed earlier, there is a growing body of research exploring various perspectives on
meta6reasoning. Compared to humans, LLMs have a scaling advantage; they can monitor, evaluate,
and control the reasoning process at scale. However, a significant disadvantage lies in the ongoing
challenge of spontaneously eliciting suitable reasoning methods.
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Read Richard Sutton’s “The Bitter Lesson” and Felix Hill’s reflections on it in the context of
the Transformer architecture. In what ways do these views comport with or diverge from
that of cognitive scientists who see inductive biases for learned abstractions as the core of
intelligence?
Answer:

Richard Sutton’s “The Bitter Lesson” emphasizes two core insights: first, as computational power
steadily increases, general methods that harness massive datasets will ultimately prevail; and second,
systems built primarily around human knowledge often struggle to match those that scale effectively
with more data. Felix Hill’s reflections further illustrate this pattern by comparing RNNs and Trans6
former architectures, noting that Transformers, with their minimal yet potent inductive biases (like
self6attention), outperform more specialized RNN6based approaches. However, neural networks are,
after all, partially modeled on the biology of how neurons communicate, and in that sense, they incor6
porate an implicit inductive bias. Thus, the role of the inductive bias in artificial intelligence (AI)—and
how closely AI should mirror human cognition—remains an open question requiring deeper scrutiny.

As the bitter lessons suggest, heavily relying on inductive biases derived from human cognition can
be misleading in AI development. First, the human learning process does not necessarily illuminate
how AI models learn. In the early stages of building data6driven systems, many researchers assumed
that learning algorithms should mirror human6style symbolic reasoning, leading them to focus on
symbolic operations (Weizenbaum (1966); Winograd (1971)). However, modern architectures typically
forgo explicit symbolic structures (Brown et al. (2020); Devlin et al. (2019)) and instead employ
statistical models that learn conditional word distributions (Vaswani et al., 2017), scaling effectively
with larger datasets and model sizes (Kaplan et al., 2020). Moreover, straightforward heuristics like
batch normalization—originally designed to reduce covariate shift (Ioffe & Szegedy, 2015)—have led
to serendipitous successes (Santurkar et al., 2018). Secondly, model architectures inspired by human
perceptual or attentional mechanisms have shown only limited long6term success. For instance, CNNs
(LeCun et al., 1998), which partially reflect human visual processing, were once the pinnacle of image
classification but are no longer considered strictly necessary for pattern recognition (Dosovitskiy et al.,
2021). Similarly, RNNs—explicitly modeling local word dependencies—have been eclipsed by Trans6
formers, whose self6attention mechanism more effectively captures long6range relationships (Tay et
al., 2020). Thirdly, the ways in which AI models represent learned knowledge may diverge substantially
from human cognition. Cognitive scientists have shown that people develop intuitive physics to reason
through mental simulations (Battaglia et al., 2013). By contrast, whether AI models develop an implicit
“world model” of their own remains an open question (Templeton, 2024).

On the other hand, some inductive biases appear to be shared between AI systems and human cogni6
tion. For instance, the capacity to transfer prior experience and adapt to new tasks is a fundamental
trait in both human and AI models. Humans can rapidly understand new tasks and leverage previously
acquired knowledge in a few6shot or zero6shot manner (Lake et al., 2016). Similarly, in the context of
meta6learning, MAML (Finn et al., 2017) demonstrates an algorithm that learns a general parameter
initialization so that models can adapt to novel tasks with just a few steps of training. In natural
language processing, large language models likewise exhibit the ability to adapt to downstream tasks
through fine6tuning (Hu et al., 2021) or to generalize using only a handful of in6context examples (Dong
et al., 2024). Additionally, both AI models and humans may share a capacity for reasoning that allows
them to make inferences transcending immediate observations. For example, a human6like chain6of6
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thought approach (Wei et al., 2022) has been shown to significantly improve AI performance, even
without additional training.
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To what extent can humans know the intrinsic mechanisms of NLP models? List a few
approaches to explain NLP models, and describe their strengths and weaknesses. In cases
where humans cannot or do not fully understand the intrinsic mechanisms of NLP models,
why is it important (or why is it not important) for them to have such an understanding?
Answer:

The following is a non6exhaustive list of mechanistic interpretability methods:

• Linear Probing:
Current research (Elhage et al., 2022a) has identified the superposition hypothesis, which suggests
that deep learning models can represent more features than the number of neurons they contain.
Although many neurons in transformer models are polysemantic (Elhage et al., 2022b)—meaning
that each neuron can be activated by multiple distinct concepts—the mechanism by which these
representations are composed remains a puzzle. One possible explanation is that features are encoded
as linear combinations of neuron activations.

With this assumption, the linear probing method aims to employ a linear classifier to recombine the
activations of specific layers, providing insights into the internal representations of a neural network.
The method was first proposed by Alain & Bengio (2018). Given a hidden layer (ℎ) of the neural
network (𝐻) and the number of output classes 𝐷, linear probing seeks to train a linear classifier 𝑓
that outputs the probability distribution for the target classes using the activations 𝑎ℎ from layer ℎ:

𝑓(𝑎ℎ) = softmax(𝑊𝑎ℎ + 𝑏)

where 𝑊  is the weight of the linear layer and 𝑏 is the bias term.

‣ Strengths: Since probing involves only a linear layer, this method is notable for its simplicity
in training and computational efficiency. More importantly, it provides a detailed view of the
dynamics at each layer and can be applied to investigate the internal mechanisms of NLP models.
For instance, (Alain & Bengio, 2018) used this method to demonstrate that features are progres6
sively transformed across layers to facilitate classification, as evidenced by the decreasing error
rate of the linear probe in deeper layers. Building on the assumption that vector representations
can align with the geometric properties of syntax trees, (Hewitt & Manning, 2019) found that
ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019) encode syntactic structures within their
vector representations.

‣ Weaknesses: Firstly, it is evident that the linear features combination assumption underpinning
the validity of linear probing is somewhat impractical. Secondly, linear probing may fail to
provide meaningful insights if a feature cannot be represented as a linear combination of other
features, as highlighted by (Engels et al., 2024). Finally, as suggested by (Bereska & Gavves, 2024),
linear probing does not offer a behavioral understanding of the system but instead focuses on its
dynamics.

• Sparse Autoencoder (SAE):
Following the superposition hypothesis, Bricken et al. (2023) demonstrated that it is possible to use
sparse autoencoders to identify interpretable features from transformer models. The problem closely
resembles sparse dictionary learning (Elad, 2010). Specifically, given an activation vector (𝑥𝑗) from
the intermediate layers of a model, the goal is to decompose it into a combination of basis vectors
in the form:
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𝑥𝑗 ≅ 𝑏 +∑
𝑖
𝑓(𝑥𝑗)𝑑𝑖

where 𝑓(𝑥𝑗) represents the activation of feature 𝑖, 𝑏 is the bias, and 𝑑𝑖 denotes the basis vector. The
activations can be learned by training an autoencoder model as follows:

𝑓(𝑥𝑗) = ReLU(𝑊𝑒(𝑥 − 𝑏) + 𝑏𝑒)𝑖

while enforcing sparsity in addition to the reconstruction loss using an 𝐿1 norm:

𝐿(𝑥𝑗, 𝑥𝑗) = ‖ 𝑥𝑗 − 𝑥𝑗 ‖2 + 𝛼 ‖ 𝑓(𝑥𝑗) ‖1

By evaluating the conditions under which certain feature activations are active and testing whether
modifying the activation values causes behavioral changes in the model, it becomes possible to
infer the semantic meaning of these features. In their study, Bricken et al. (2023) identified features
corresponding to Arabic, DNA, Hebrew, and others.

Two critical training details emerge:
‣ Due to the presence of superposition, the objective is to decode polysemantic neurons into

monosemantic ones. Therefore, the latent dimension of the autoencoder should be larger than the
input feature dimension rather than compressing it.

‣ Larger training datasets resulted in sharper (sparser) feature disentanglement.

‣ Strengths: Firstly, the SAE method is simple and can be applied to a wide range of modern
transformer models. Secondly, compared to the traditional methods, the SAE demonstrated better
interpretability performance (Cunningham et al., 2023).

‣ Weaknesses: The main drawback of this method is that it does not provide ground6truth inter6
pretable features (Bereska & Gavves, 2024), requiring diligent analysis to interpret the discovered
features.

• Integrated Gradient (IG):
Different from the previous two methods, the integrated gradient, first proposed by Sundararajan et
al. (2017), is an attribution6based method that tries to assign the attribution to the input features or
the intermediate layer output via gradients.

Formally, suppose we have a function 𝑭 : ℝ𝑛 → [0, 1] that represents a deep network and an input
𝑿 = (𝒙𝟏, 𝒙𝟐,…, 𝒙𝒏) ∈ ℝ𝑛. An attribution of the prediction at input 𝑿 relative to a baseline 𝑿′ is
vector 𝑨𝑭 (𝑿,𝑿′) = (𝒂𝟏,…, 𝒂𝒏) ∈ ℝ𝑛 where 𝒂𝒊 is the attribution of 𝒙𝒊 to the prediction 𝑭(𝑿).
For a straightline path 𝛾(𝛼) ∈ ℝ𝑛 from baseline 𝑿′ to input 𝑿, the integrated gradient along the
𝑖th dimension is defined as follows. Here, 𝜕𝑭(𝑿)𝜕𝒙𝒊

 is the gradient of 𝑭(𝑿) along the 𝑖th dimension.

IntegratedGrads𝑖(𝒙𝒊) ≔ (𝒙𝒊 − 𝒙𝒊′) ×∫
1

𝛼=0

𝜕𝑭(𝒙𝒊′ + 𝛼(𝒙𝒊 − 𝒙𝒊′))
𝜕𝒙𝒊

Which is just the path integral (for the straightline) from baseline 𝑿′ to input 𝑿 because

𝛾(𝛼) = 𝒙𝒊′ + 𝛼+ (𝒙𝒊 − 𝒙𝒊′)

𝜕𝑭 (𝛾(𝛼))
𝜕𝛼

= 𝜕𝑭(𝛾(𝛼))
𝜕𝛾(𝛼)

× 𝛾(𝛼)
𝜕𝛼

= 𝜕𝑭(𝒙𝒊
′ + 𝛼(𝒙𝒊 − 𝒙𝒊′))
𝜕𝒙𝒊

× (𝒙𝒊 − 𝒙𝒊′)

.
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In practice, the integral is approximated by the Riemann sum.

‣ Strengths: The integrated gradient stands out due to it satisfying serval axioms (Sundararajan et
al., 2017):
– Implementation Invariance: The attributions are always identical for two functionally equiv6

alent networks. Two networks are functionally equivalent if their outputs are equal for all
inputs despite having very different implementations. Assuming the implementation detail can
be described by function ℎ, the chain rule for gradients is essentially about implementation
invariance:

𝜕𝑓
𝜕𝑔
= 𝜕𝑓
𝜕ℎ
𝜕ℎ
𝜕𝑔

– Completeness: Integrated gradients satisfy completeness that the attributions add up to the
difference between the output of 𝑭  at the input 𝒙 and the baseline 𝒙′.

– Sensitivity: An attribution method satisfies sensitivity iff:
• For every input and baseline that differ in one feature but have different predictions then the

differing feature should be given a non6zero attribution.
• If the function implemented by the deep network does not depend (mathematically) on some

variables, then the attribution to that variable is always zero.

– Linearity: Suppose that we linearly composed two deep networks modeled by the function 𝑓1
and function 𝑓2 to form a third network that models the function 𝑎 × 𝑓1 + 𝑏 × 𝑓2. Then, the
attribution for the third network is expected to be the weighted sum of the attribution for 𝑓1
and 𝑓2 with weights 𝑎 and 𝑏, respectively.

– Symmetry-Preserving: Two input variables are symmetric w.r.t. a function if swapping them
does not change the function. For instance, 𝒙 and 𝒚 are symmetric w.r.t. 𝑭  iff 𝑭(𝒙, 𝒚) =
𝑭(𝒚, 𝒙) for all values of 𝒙 and 𝒚. An attribution method is symmetry6preserving if, for all inputs
that have identical values for symmetric variables and baselines that have identical values for
symmetric variables, the symmetric variables receive identical attributions. Despite there being
infinite paths connecting the baseline to the output, the straight between the two is the only
path that guarantees the symmetry6preserving property.

‣ Weaknesses: In practice, selecting an appropriate baseline is often ambiguous. By definition, an
ideal baseline should result in a zero output from the neural network, which is challenging to
achieve for both computer vision and natural language models. For example, a black image does
not guarantee a zero output in computer vision models, nor does an empty string in language
models. As a result, the choice of baseline is highly contextual, and several strategies have been
proposed to address this issue (Sturmfels et al., 2020).

Regarding the remaining aspects of the question, while we may not fully achieve a deep understanding
of neural network mechanisms through an interpretability lens, interpretability remains valuable for
enhancing alignment and improving the safety of AI systems. For instance, Anonymous (2024) (a paper
currently under review by ICLR 2025) demonstrated a way to find the neurons that related to safety
and their experiment results demonstrated a more efficient alignment method by selectively fine6tune
on those neurons without compromising performance. Similarly, Dai et al. (2021) demonstrated a way
to identify the neurons that related to certain knowledge and a way to suppress the knowledge by
reducing the activation of those neurons.
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Identify some critical drawbacks of modern NLP systems, and introduce approaches to detect
and mitigate them.
Answer:

From my perspective, there are two main drawbacks of modern NLP systems:

• Safety:
The development of language models (LMs) has accelerated significantly in recent years (Radford
& Narasimhan (2018), Achiam et al. (2023), DeepSeek6AI et al. (2024), Abdin et al. (2024)), with
increasing focus on their application in specific domains (Wu et al. (2023), Xu et al. (2024), Acharya
et al. (2023)). Despite their remarkable performance, concerns have emerged regarding the safety
of deploying LMs in real6world settings, sparking ongoing discussions (Bommasani et al. (2022),
Weidinger et al. (2021)). Among the potential risks, the social bias embedded in large language
models, their capacity to create or amplify misinformation, and their susceptibility to attack stand
out as particularly pressing challenges.
‣ Social Bias: Because LLMs are trained on data scraped from the web, it is inevitable that certain

biases embedded in the training data will be reflected in the models. Although preference6
alignment methods (Ouyang et al., 2022) aim to produce responses consistent with human values,
studies have shown that these models can still exhibit biases toward certain cultural groups. For
instance, researchers have identified typical gender and racial biases (Wan et al. (2023), Sheng et
al. (2019)), and have noted that the association of “Muslim” with terrorism in LLMs (Abid et al.,
2021) is especially concerning. Consequently, establishing methods to measure and mitigate social
biases in LLMs is paramount.
– Detect: Various benchmarking datasets can be employed to detect social biases across different

model architectures. For instance, frameworks like SEAT (May et al., 2019) can identify biases
in encoder6based models, while UNQOVER (Li et al., 2020) and BBQ (Parrish et al., 2022) offer
methods to measure biases in question6answering contexts for decoder or encoder6decoder
language models.

– Mitigate: Mitigating social biases can occur at multiple stages in the LLM training process.
For instance, applying preprocessing techniques during the data preparation phase can help
remove or reduce biases in the raw dataset (Mondal & Lipizzi, 2024). Meanwhile, post6training
approaches—such as fine6tuning—have also been shown to effectively correct existing social
biases (Jin et al. (2020), Chen et al. (2024)).

‣ Misinformation:
Language models can produce text that is often indistinguishable from human6generated content.
In Spitale et al. (2023), researchers tasked human annotators with determining whether tweets
were generated by GPT63 or written by humans; the findings revealed that people could not
reliably differentiate synthetic text from authentic human text. Moreover, Jakesch et al. (2023)
demonstrates that the heuristics humans rely on to detect machine6generated content are flawed
and easily manipulated. Given their strong capacity to produce human6like language, LMs can be
readily misused to disseminate inaccurate information on social media, thereby amplifying false
narratives. Yang & Menczer (2024) further underscores this risk, providing a detailed analysis of
Twitter botnets and highlighting the prevalence of ChatGPT6powered bots that promote malicious
websites and harmful content. Consequently, curbing the spread of misinformation has become
an urgent priority.
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– Detect: Recent endeavors have investigated several approaches to identifying LM6generated
text. For example, Mitrović et al. (2023) explores using a transformer6based classifier to
distinguish synthetic text, while Mitchell et al. (2023) proposes a classifier6free method that
assumes text generated by an LM yields a low6entropy inference distribution. Despite the
current research demonstrating a decent performance on each subtask, the transferability of
the detection method remains under debate.

– Mitigate: The ability to identify LM6generated text is crucial for mitigating the spread of
misinformation. Accordingly, some researchers have proposed “watermarking” techniques that
embed imperceptible patterns in the generated text to facilitate its detection (Liu et al., 2024).
Another promising strategy is claim verification, which checks whether a statement is grounded
in factual evidence. For example, integrating knowledge graphs into claim verification enables
fact validation against existing structured data (Kim et al., 2023).

‣ Susceptibility to Attacks: Despite the LMs are aligned with human values in the post6training
process (Ouyang et al. (2022), Rafailov et al. (2024), Hong et al. (2024)), the recent studies continue
to find the models would response to a malicious request under various attack techniques (Wallace
et al. (2021), Zou et al. (2023)). The attack targeting the LMs could be exploited to generate
unethical, illegal, and uncontrollable content.
– Detect: Red teaming techniques can be employed to identify potential vulnerabilities. Harm6

Bench (Mazeika et al., 2024) introduces a standardized evaluation framework for automated
red teaming. More recently, another study aligned safety benchmarks with newly proposed
regulatory requirements (Zeng et al., 2024).

– Mitigate: To protect LLMs from the aforementioned attacks, researchers have developed vari6
ous defense mechanisms. For instance, Inan et al. (2023) introduces a system6level safeguard that
monitors both user inputs and model outputs. More recently, researchers have demonstrated
the potential to identify “safety neurons” and selectively fine6tune LLMs to enhance their safety
without compromising overall performance (see the ICLR Submission).

• Training:
Modern large language models (LLMs) demand vast computational resources. For instance, training
the 176B6parameter BLOOM model (Wu et al., 2023) consumed approximately 1.1 million GPU hours
(Luccioni et al., 2022), and the development of such massive LLMs also contributes significantly to
carbon emissions (Ding & Shi, 2024). Given the immense costs—both financial and environmental
—associated with training these models, it is crucial to explore more efficient ways to develop and
update LLMs. Rather than retraining models from scratch, researchers are increasingly focusing on
methods that allow LLMs to be adapted to new tasks while minimizing additional computational
overhead and mitigating the associated carbon footprint.

‣ Mitigate:
Consequently, a diverse set of innovative solutions has been proposed to customize pre6trained
language models for specialized tasks, ensuring seamless adaptation without extensive retraining.
Low6Rank Adaptation (LoRA) (Hu et al., 2021) freezes the pre6trained model’s weight matrices and
injects trainable low6rank decomposition layers into each model layer. This approach is applicable
to a wide range of models, effectively reduces memory requirements, and introduces no additional
inference overhead—thereby enabling more efficient LLM adaptation. P6tuning (Liu et al., 2023)
also keeps model weights fixed, appending a trainable embedding prefix to the input prompt to
better tailor the model to the target task.
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In addition, optimizing both training and alignment can reduce computational costs. Direct
Preference Optimization (DPO) (Rafailov et al., 2024) eliminates the need for a separate reward
model, improving performance while streamlining the training pipeline. The Odds Ratio Prefer6
ence Optimization (ORPO) technique integrates supervised fine6tuning with preference alignment
for further efficiency gains. Beyond algorithmic strategies, lower6level optimizations can also
accelerate the training process. For instance, mixed6precision training (Micikevicius et al., 2018)
diminishes memory usage and speeds up training, while the DeepSpeed framework (Rajbhandari
et al., 2020) has been widely adopted for large6scale distributed LLM training to optimize memory
and enhance throughput.

12



People have sophisticated metacognitive abilities in the area of memory (“metamemory”),
both for themselves (knowing what they remember) and for other (knowing what others
remember), which they can use in the context of transactive memory systems (e.g., asking a
friend for a reminder about a shared experience). What might it look like to imbue AI agents
with metamemory with respect to other agents (i.e., knowing what other agents remember)?
In what contexts might it be useful? In what contexts might it be essential?
Answer:

Memory plays a vital role in our daily cognitive processes. It enables us to store learned experiences,
associate them with emotions, and organize these experiences for efficient retrieval in the future. Given
the critical importance of memory, recent research in large language model (LLM) agents has proposed
integrating memory systems to enhance their ability to learn from past experiences and interact
more effectively with their environment. For example, ReAct (Yao et al., 2023) allows LLM agents to
reflect on past experiences to refine their action space, while Reflexion (Shinn et al., 2024) leverages
episodic memory to guide the learning process. Metamemory, defined as an individual’s knowledge
and awareness of their own memory processes (Flavell & Wellman, 1975), has not yet been explicitly
acknowledged or integrated into the current design of LLM agents.

Firstly, designing a transactive memory system, where agents can exchange what they know or
understand, requires a new mechanism that enables agents to effectively articulate or summarize their
knowledge. The current state6of6the6art agent systems implement memory structures based on the
retrieval6augmented generation (RAG) framework (Park et al. (2023), Yu et al. (2024)). While RAG is
effective (Fan et al., 2024) and offers flexibility in the choice of memory medium (Bag et al. (2024),
Yang et al. (2024)), it is limited to answering “local” queries and cannot handle “global” queries, such
as summarizing the general topic of the memory store. Without an additional mechanism, LLM agents
face significant challenges in summarizing their memory stores—a critical first step in developing
a functional transactive memory system. Edge et al. (2024) proposed a graph6based solution that
summarizes the memory store by grouping memory events using a community detection algorithm.
However, this approach is not a panacea for enabling agents to mimic human behavior, as the graph
structure may fail to provide a viable method for summarizing memory in other forms, such as chrono6
logical events (Tenenbaum et al., 2011). Secondly, interchanging metamemory across all agents may
be inefficient, as it demands significant computational power and introduces substantial redundancy.
This inefficiency arises from the agents’ inability to filter and attend to information with a focus. Thus,
a “meta RAG” may be required as a central repository for metamemory, enabling individual agents to
query summary information from others or directly connect with specific agents for collaboration and
information exchange.

The transaction of metamemory holds the potential to create a system akin to a “hive mind,” where
knowledge is distributed and stored across multiple agents. In such a system, memory can be shared
dynamically by establishing direct communication between agents, enabling seamless collaboration
and information exchange when necessary. This approach would be particularly useful for building
LLM agent systems that require strong collaboration. For example, in a coding LLM agent system for
a large development project, individual agents could possess local knowledge about the code they
produced while being coordinated to implement cross6module functionalities efficiently. Such a system
may be essential in scenarios where aggregated responses are necessary. For instance, this approach
could facilitate the formation of distinct groups of agents in financial market simulation use cases (Yao
et al., 2024).

13



The word “bias” is used in many fields across the behavioral, social, and computational
sciences. Learners have inductive biases. People have identity-based biases reflected in their
implicit and explicit attitudes towards those of particular genders, races, ethnicities. People
also have biases less directly connected to identity (e.g., a bias that grey-haired people are
older). ML models can exhibit a bias–variance tradeoff. AI ethicists are concerned about bias
inherent in NLP models, e.g., in embedding models. Neural networks can include a bias term.
Define these various senses of “bias” (and any other senses that are commonly discussed in
the literature on your reading list) and compare and contrast them. Do they all refer to the
same concept? Do they all refer to distinct concepts?
Answer:

Bias, according to Merriam6Webster, refers to an inclination of temperament—often (though, as I will
argue, misleadingly) linked to unfair judgment toward a particular person or thing. Beyond its social
manifestations, the concept of “bias” appears in numerous scientific fields, each with its own nuances.
Nevertheless, I propose that bias can be broadly understood as an unconditionally systematic
deviation from a neutral reference frame. By itself, bias is neither inherently positive nor negative;
rather, cultural context determines how we interpret it. In statistical learning, for instance, bias can
improve modeling accuracy, though sometimes at the cost of increased variance. Conversely, in the
realm of algorithmic fairness, social bias often necessitates mitigation to protect certain cultural
subgroups. Despite its wide prevalence, bias can generally be categorized into the following types:

• Bias in Statistical Machine Learning:
In statistics, bias refers to any feature of a statistical method that causes the estimated expected
value of a population parameter to deviate systematically from its true value. Let the 𝑀  denote the
statistical method and 𝑃  as the parameter(s) to be estimated, then the bias defined as

𝑎 = bias(𝑀,𝑃) = 𝐸[𝑃 ] − 𝑃

where 𝐸[⋅] is the expectation function, and the 𝑎 is the bias associated with the statistical 𝑀 . While
certain biases can be traced back to specific methods, others—such as sampling bias or omitted
variable bias—are more general and can affect a wide range of statistical procedures.

In the context of statistical learning, the concept of bias remains essentially unchanged; however,
the focus shifts to estimating model parameters. Consequently, bias typically refers to the deviation
of these estimated parameters from those of the true model. Additionally, the interplay between bias
and variance is crucial to understanding how well a model generalizes to unseen data. This dynamic
is captured by the well6known bias–variance trade-off (Pedro, 2000). Assuming a mean squared loss
(MSE) objective, assuming the data is generated by the function 𝑦 = 𝑓(𝑥) + 𝜀 where 𝜀 is random
noise with mean 0 and variance 𝛿, and denoting the model with estimated parameters as 𝑓(𝑥), then
the expected error on the unseen data can be decomposed into three parts

𝐸[(𝑓(𝑥) − 𝑓(𝑥))
2
] = bias(𝑓(𝑥))

2
+ var(𝑓(𝑥))

2
+ 𝛿

Given a certain level of MSE, reducing variance inevitably increases bias, and vice versa. In particular,
the bias term is closely tied to the “complexity” of the model; a simpler model (e.g., linear regression)
may produce higher bias but exhibits more consistent performance across unseen examples (low
variance). This principle underlies many regularization methods.

Notably, the constant term in many machine learning algorithms is often referred to as the “bias”
term (e.g., in neural networks or linear regression models). This notion of an unconditional deviation
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persists because the constant remains independent of the inputs, shifting the model’s outputs
accordingly.

• Social Bias:
The recent advances in auto6regressive transformer models have set new performance benchmarks
across a range of tasks (Jiang et al. (2023), Qin et al. (2024), Qwen et al. (2025)). Departing from earlier
approaches that favored specialized models for individual tasks, large language models (LLMs) now
demonstrate strong capabilities in few6shot and zero6shot scenarios (Dong et al. (2024), Brown et
al. (2020)). Furthermore, techniques like fine6tuning (Hu et al., 2021) and distillation (Groeneveld
et al., 2024) enable these models to be efficiently deployed for numerous downstream applications
and deployments. However, as these data6intensive models are typically pre6trained on large, web6
crawled corpora, researchers have detected social biases that can discriminate against certain groups
(Wan et al. (2023), Sheng et al. (2019)). Troublingly, findings also suggest that LLMs may even amplify
such biases, indicating that the issue can become more pronounced over time (Benjamin, 2023).

Following Gallegos et al. (2024), social bias is defined as “unfair discrimination encompassing
disparate treatment or outcomes among social groups, arising from historical and structural power
imbalances.” In natural language processing (NLP), social bias can emerge in multiple tasks. Gallegos
et al. (2024) offers a non6exhaustive list of the forms of the social bias in various tasks:
‣ Text Generation: The social bias may be identified via the probability distribution of the next

token.

‣ Machine Translation: The translated word may default to masculine words.

‣ Question-Answering: The answer may invoke stereotypes for a certain cultural group.

‣ Classification: The classification results may biased toward certain cultural group.

Given the variety of social biases documented by current research—for instance, gender bias (Bartl
et al., 2020) and ethnic bias (Sap et al., 2019)—it is crucial to develop detection benchmarks and
mitigation strategies to enhance the fairness of today’s models. Barikeri et al. (2021) provides a
conversational dataset grounded in real Reddit posts, enabling measurements of bias across gender,
race, religion, and queerness. Additionally, Rudinger et al. (2018) offers a benchmark to evaluate
gender bias by examining word associations for various social groups. To mitigate these biases
and promote fairness, Qian et al. (2022) demonstrates that training on demographically perturbed
corpora can lead to more equitable outcomes.

• Cognitive Bias:
It has been shown that people routinely use heuristics in their daily lives, which sheds light on
many of their decisions and behaviors (Griffiths & Tenenbaum, 2006). Interestingly, neural networks
trained via optimization algorithms have likewise been observed to rely on heuristics—often to good
effect for in6distribution data, though not necessarily in a universally optimal manner (McCoy et al.,
2019). Consequently, while these heuristics are not guaranteed to be correct or fully generalizable,
they underpin much of our day6to6day cognitive processes. Although some define cognitive biases as
“systematic patterns of deviation from rational judgment,” I contend that the biases should be under6
stood as heuristics, which are not necessarily bound to rationality. Such heuristics may develop from
accumulated experience and, owing to their shortcut6like nature, can lead to irrational behaviors or
understandings. Moreover, as social interactions play a crucial role in shaping our experiences, these
heuristics may also manifest as social biases. Given that neural networks learn in a comparable way
—adapting to patterns in available data—it is unsurprising that both humans and neural networks
exhibit similar biases (Caliskan et al., 2017).
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In this sense, cognitive biases—or heuristics—function as a prior for understanding, shaping the
way we interpret and integrate new information. Building on experimental and modeling work,
Oosterhof & Todorov (2008) shows that impressions of faces can be decomposed into two orthogonal
dimensions: valence and dominance. Valence indicates whether we are inclined to approach or avoid
someone, whereas dominance relates to the person’s perceived physical strength. Consequently,
affective traits such as sadness, anger, or happiness can be represented as combinations of these
two features. Furthermore, Peterson et al. (2022) demonstrates that high6dimensional latent feature
vectors for human faces, derived via StyleGAN (Karras et al., 2019), can be leveraged to create a
model closely aligning with human perception. Manipulating these latent vectors yields changes in
facial photographs that remain consistent with human evaluations. Meanwhile, certain cognitive
biases are intrinsically tied to notions of rational decision6making, further illustrating how shortcuts
in judgment can affect our capacity for logical analysis (Tversky & Kahneman, 1974). Interestingly,
Jones & Steinhardt (2022) finds that these irrational biases are not limited to humans, as they also
emerge in LLMs.

For the rest of the question, in my opinion, the biases all these biases involve a systematically uncon6
ditional deviation from a reference frame to some degree, yet each operates under its own distinct
context.
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	Questions
	Can NLP models make decisions? How well are they capable of reasoning, on what types of tasks? Are these capabilities a property of the particular NLP models you considered, the class of models they are members of, or all NLP models as a whole?
	Can NLP models make use of metacognitive reasoning? How well are they capable of metareasoning, and on what types of tasks? Compare to the case of human reasoning. Point out any areas where machines may have structural advantages or disadvantages in metareasoning in comparison to humans.
	Read Richard Sutton’s “The Bitter Lesson” and Felix Hill’s reflections on it in the context of the Transformer architecture. In what ways do these views comport with or diverge from that of cognitive scientists who see inductive biases for learned abstractions as the core of intelligence?
	To what extent can humans know the intrinsic mechanisms of NLP models? List a few approaches to explain NLP models, and describe their strengths and weaknesses. In cases where humans cannot or do not fully understand the intrinsic mechanisms of NLP models, why is it important (or why is it not important) for them to have such an understanding?
	Identify some critical drawbacks of modern NLP systems, and introduce approaches to detect and mitigate them.
	People have sophisticated metacognitive abilities in the area of memory (“metamemory”), both for themselves (knowing what they remember) and for other (knowing what others remember), which they can use in the context of transactive memory systems (e.g., asking a friend for a reminder about a shared experience). What might it look like to imbue AI agents with metamemory with respect to other agents (i.e., knowing what other agents remember)? In what contexts might it be useful? In what contexts might it be essential?
	The word “bias” is used in many fields across the behavioral, social, and computational sciences. Learners have inductive biases. People have identity-based biases reflected in their implicit and explicit attitudes towards those of particular genders, races, ethnicities. People also have biases less directly connected to identity (e.g., a bias that grey-haired people are older). ML models can exhibit a bias–variance tradeoﬀ. AI ethicists are concerned about bias inherent in NLP models, e.g., in embedding models. Neural networks can include a bias term. Define these various senses of “bias” (and any other senses that are commonly discussed in the literature on your reading list) and compare and contrast them. Do they all refer to the same concept? Do they all refer to distinct concepts?
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